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1. INTRODUCTION

In this paper we shall be concerned with twe mathematical models
of infinite dams, In the first model independent random inputs occur
at regular tims intervals amd u the second model independent random
inputs oecur in aceordances with a Polgson process, The Dirst modsl
has 2iready bsen atvdied by J, Gand [6], G, F. Yeo [16] and others, and
the second model by J, Ceni and N,U, Prebhu [?7], J, Gezt =nd R, Pyke [8],
D, 0, Kendall [9], and others, For both models we shall find expilcit
formlszs for the distribution of thu content of the dam and that of
ths lengths of the wet paricds sad dry periods. The proofs are els.
mentary and based on two gensralisations of the classieal ballet theorem,

2, OENERALTZATTONS OF N8 CIASSIYCAL BALIOT THEOREM

The clesaical bailot theorem 45 85 fellowss Supposs that ina
ballot candidate A oeoves a wobcs and cordidate B seores b votes,
et a>ub vhore p>0 is on intoger, The probability that,
throughout the counting, tho nunbey of votes for A is always greater
than yn times tho mmbar of votes mogistered fer B is

a=xb,

(1) P= ath *

provided that 311 the voting records sro oqually probable,
Fermla (1) for p = ) was found in 1887 by J, Bertyand (4] and
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for n>1, also in 1887, by £, Dadler [31. The proof of (1) for
p=1 was given in 1887 ty D, André [2] and for 1 > 1 in 1924 b
A, Aepply, [1).

The ¢lassical ballot theorem can also bo formmlated as fellows:
lot vr-O i1f the r~th vote is cast for A and let vrs(pi-l)
1f the »eth vote 1s cast for B, let n =23+ and k= b(p+l), Than

(2) P {71‘.'.00“' Vr <pfor = 1,..-,:1! V1+°¢.+ fn = k_} =] -%:- 9

if 0<k<n,

The author proved by mathemntiecal industion thet (2) also
holds 1f, more generally, Visoess V, &I interchangeable random
variables sasuming nomsgative intoger valmss, (C2, [10] amd [11],)
Moreover (2) aleo holds if <i..e., ¥, 370 Oyelically interchangssble
randonm variables assurning nomegative integer values, For this latter
case & simple geometrie proof wme given bty C. L. Mallows (oral commr.
nication), Cf, also J, C, Temmer [15] and M. Duesg [5]. In what
foilows we shall prove (2) for cyclically interchangeabls rendom
variables,

THEOREM 1, let uy suopose that 95 vseees Y, 2Ye poxmegative,
integer-valued random veriablas thet all n gyclic vermutatlons

e_f’ ("1, Vzg YY) Vn) :A‘ -

p
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PROOF, let ), Kyeesp k; Do fixed nonnegative integers with
sum k,# K ..otk =k where O<k<n, Define l::}."n = k‘1 for J=1,2,0ec o
We shall prove that among the n ayclic permatations of (k;, Kyreees k)
there are exactly nek for uhich the sum of the first r monbers i=
lass than r forall 2 = 1,2,...,n, Hence ths theorem Linmediately
follows for O<k<n.If k=0 or k 2n, then (3) 1is trivially true,

Define A; * Ja(ky + ees +k,) for J=1,2,00 s Them A;Hn =
Ag+lp=Ag+(ak) for §=1,200. . Lot m be the greatest
positive integer for which A = min(L\;, Dypeeey A,)e Yow we shall
prove that there are exactly n.k values among i = mtl,,.., min such
that
() Ay < Ay forall §=i4,..., L4,
that is, there are exactly ne-k permutations among (kiﬂ'“"ki-t-n) R
1= mil, .00y Win, ZLor vhich the sum of the first r mnembers iz less than
r forall r=1,2,,,.y0

Denote ty 11, 12,...,1!”‘ the greatest indices szuch that
Ay = Aty &y =Agt 2ueens by =0, 4 (k) AW
vespectively. They exist because Ajﬂ -AJ S1 forevery jo By
the definition of m we have 4 . =mn and therefore RSy €L, Seee<d o
min, Clearly (4) holds if and only if 1:11, 12,..., "Lk + This
proves the asszertion,

Fow we shall also prove a further genersliszation of the classical
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‘Allot theorem, The following theorem was found by the amthor [12]
Zor interchangeable rendem variables, however, we shall prove it here,
9)ightly more generally, for cyclically interchangsable random variables,

THEOREM 2, Let us suppose that 2',, 2,seses 2, 2re nommegative
7iodom variables and that all the n cygilc permtetions of (73, 2,00000 7))

‘have a_common joint distribution, lLet Tys 29-""[: be the coordinates

arranged in inoreasing order of n points distributed uniforwly snd
independently of each other in the interval (S5,t) . If {x1 and
{Tp} are jndevendent sequencgs, then

(5) P {xl cee +Zl‘ Tr for r= i, eosy n]Zl + woe +,Zn = y}l

1-%) &£ osy =,
o gtherwiss ,

ed that the laft hand s 5 _defined,

PROOF, Let

{6) A @)= sz‘

T, Su
Zor O Su <t. Then the left hand side of (5) can also be written as
followss P {,Z (u) Su for 0Sust JA(L) = yj . How defins

7) o2 (z(....._> -2t )] e L2, 2
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where the symbol [a] denotes the greatest integer < a, By Theorem 1
we have for O Syt that

A

(8) 1-§

because v{m)’ 1=1,2, cuss 2", are oyoclically interchangeable random
variables that assume nommogative integer values and

%-név{m)+,,, +v;;)§ %

it 2(t)=y, If m —> oo 4in (8), then by the continuity theorem
of protability we get that

(9) PiX(a) gu for Ogust |2 () =y} =1

for O sy St . This proves (5),

REMARK, In [13] we proved that if Vis ¥ps eeep ¥, 4re inter-
changeable random variables that assume nonnegative integer values,
then the probability that ¥y tree v <P holds for exactly J values

anong r =1, ..., 1 given that v1+...+vn-k is

a0 2yn 3 R P e v = Dy et vy =
p U |

if 0<k<ne.l and J = n.k, ,ee, Del, and

(11) P

= &
i n

if k=n.l and J=1,2, s, N
By using the same procedure as we used in proving Theorem 2 we can
obtain from (10) and (11) the following result: Ile. 2’2. eoey Zn

Piv{.) + uoe +,§‘n) Srforr=l, « 20 JZ(t) -y} §1-§+.:;
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are nonnegative, interchangeable random variables, if 2 (u) is defined
ty (6), and if 9 (t) demotes the measure of the set {u: Z(u) Su
and 0gugtl, them

(12) Pfo(t) gx |2 (¢) =y} =SS%(§ ) P{n<2(n) < utdn | 2(t) -w}dv
tgutv

ugy, vex
if y<t and tygxgt, and

(13) Plo)gx |Z () =t) =%

3. REGULAR INPUT

Suppose that at times n =1, 2, .., water of guantities Vis Vo1 ves
is flowing into & dam (reservoir) and the release is continucus at
constant unit rete when the dam is not empty. Suppose that vy, v,s sees Vo e
are identically distributed, mutvally independent rendom variables that
assume nommegative integer values. Dencte Ly M a the content of the dam
immediately after time n, Then wa have

(W) "z.n-[’?n.l'lr'*'n’n-l’z’""'

The initial eontent "z_o is & nomnegative integer. Denote Ly Do the



time of the first emptiness, i.e,. the smallost value of n wich ihat
™ 0, Following the initial wet period (if any) dry periods and
wat periods alternate, Dencte by 01, 92, eves On, eco the lengths
of the successive wel pericds other than the initial one. They are
identically distributed, mituslly independent random variables. The
dry periods are also identically distributed, mmtually indspexdent rerlom
varizbles znd independent oi tie wet pariods, The probability that &
dry period hes lengih k iz [1P zvl = 0} ] [P{vl = 0% ]k"l for
k=12 ¢s0 -

By (14) we have

(15) "zn=max{vz,+ cos * v - (ner) for r=1, ..., n and

Nl.o*'fl"'ca."' Vn-n}o

In what follows we shall use the notation No = 0 and Nn =Y + g0e tT ¥

for n‘l, 2' *ne »

THEOREM 3. We have

1 peded
16) Pim sk o=} =P{N 5 n#ke1] = 3’: E{f (1- ﬁ_‘%)? {Nj-.-ga—k}z{mn_j: &
=1 =

and, n particulsr,

o o iedePasheined
J=0
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respectively 1a (15), then we cbtain a new random varizble
(18) NN}'n’-mx{Kr--:-i-l for r=1, ,,., n and Nn-n'i-"zoj ,
vhick has the same distribution as My Thus
Piy sk lmo=1} = P{N goksi] -
(19)

P{Engm-k.i aed N 2 14k Zor some r=1, ..., nj »

lat r= (=1, 4oy Del) Dbe the groatest r for which N, 2 v,
“hen HJujﬂc and.

3=l
P{"zn;:_k I Mg =43 = P{}, 1 o+ -Z_;f'{udagﬂg} .
(20) =1

P{l«!n-nj__s_,n-j-i. @l Ho-Ny<r-forrs= i, .., nd .

Ry Theoren 1
(1) P5i“r“”3<”"3 for © = ¥, seep, n amd

P
X, - By S mid 'Z: G msip) P Py =4

Patting {21) into (20) we get (16). If, in partioular, k = O,
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then by Theorem 1

(22) Ply =0 '"{o"i} aP{mng__n.ﬂ. ad R <rfor r=l, cwo al =

B4
Ljao'
THEOREM 2, M@ hava dex 2 L. g

Pl = 4l P B, L H_< dor for
vz Wy Theorom 1 the rzecond fredor iix {he

THECRIBL 5,

¢

Py

(25) ® {7 snf= %‘f “54? Pl =30 R

PRGSE. T4 emm casily ks asnig thel

cl;ﬂ ham i:q.g i:- k= lg :Zv; EEAE

£ 2Ly ooy el Eg» 3 : ;

s -2 2 A
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and (25) follows from Theorem 1,

REMARK, I we suppose that the level of the dam may vary in the
interval (= 00, 0), that is, the dam never bocomes empty, then the
probability that in the timg intwrval (0, n) the total time duweing
whish tho level is bolow the initial level given that Nn-k is

(27) P{_nr<r Yor J indices r= 1, ....nlﬁnwk} =
L ARy ? (a4 1= )
2 G nedel {Tya "y
Jom. §
If 0<k<nnl and J m neky ceey Dml, &0
() P{N <r for jindices r=1, .o, n|q =0} =i

if k= n.l and 3“1’ esey N Thesa follow from (10) and (11)
reapectively.

4, POISSON INPUT

Suppose that An the tine interval (0, c0) water is flowing into
a dam (reservoir) acocording to a rendom process and the release is
contirmous ot constant unit rets vhen the dam is net emply, Demcte
r 2 (t) the total quantity of water flowing into the dam daring the
time interval (0, t). It is supposed that



(29) 2 = Z‘;‘) 2y

vhere {v(t), 0 <t < oo} s a Folsson process of density A  and
Z1s Zps aves X e <o tre identicully distributed, mtuzlly independent,
positive random verisbles and indepsndent of {v(¢)§ .

Demote Gy ™M (%) the contond of the dam at time t. The inltial
content M(0) 20. Demote iy &, the time of the rivet omptiness; 6, =0
it M(0) = 0, Followimg tho initial wot poried (A7 auy) dry perdods amd
wat periods alternate. Denoie ty g, 955 aces 9y +oo the lengths of
the suagessive wi periods other thau the initisl ene. They are identinalliy
distriboted, matoally indepondent rendom variables., The dry periceds
are also idemntieally distributed, matually indspendent random varicbles
and independent of the wet perdods, Tho probabllivy that a dry perled
has lwgth < x 3o 1a6 2% gor x 20,

First we mantion that by Theersm 2 110 have

(30) PiZf@)ga for Osust [X@W =y =B

if 0<y <t. For if we know that in the time intorval (O,t) there

are n > 0 events in ths Poloson process, then the cesurrence times

Ty Top eoos T, have the seme joint distribution as the coordinates
arranged in incressing order of n points distributed uniferaly and
independently of each othar in the interval (O,t). Tms by (5) the
probability that 2(u)<m for OSugt glven that 2(t) =y amd
vit)=n 15 (1.9 4f 0gygt, Since this probability is indepondsat
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of the condition +(t) =n, (30) follows immediately.

By using (30) or the procedure which we used in proving Theorem 2
we obtein the Zollewing theorems correcponding to Theorems 3, 4, and 5,
In what follows we shall uss the notation def_Z'(n)ng =
P{x < %(un) g xxdx] regandless of uhether u depends on x or not,

THSOREM 6. If ¢20 spd x2 0, ihen
(1) Pimt) gx |M0) med =P {2(t) S thmme] -

gg (=) &, P{2e) s uix} 4 P{2(tu) g v}

whStad
O, Oy
Za pertisalar,
tee
G2 rfmw =0l =6} = | a-PHarwss
0

iL tz2e 2 O eothorwiss.
THEOREM 7. Jf e >0, them
t
33 P{gstIn@ == (L g 2{zi) s oo}
<

i t>0, agd 0 4 t<o,

12



wlle

THEORRM 8, J£ ¢ 20, ihen

%

(3 »{e st] = %S da pfo<2w) gu}
0

far 1=1, 2, 0.y and A=2im  P{T(t) >0} /t.

t=>0

The shova thres theorams have baen proved in [L] uvnder the more
genoral assumption that i/’f (), Ogt< oo} i3 a stochastic process
with nonnegetive, stationexy, indepandent increments,

RRMARK, If we supposs that tho lovel of the dam may vary in the
interval (-00, 00), that is, the dam nevor becomes empty, then the
probebility that in the tims interval (O, t) the total time during
which ths level is below the initial level given that ¥ (t) =y is
equal to (12) or (13) vhere mow {2 (t), C £i <o} is defined
by (29).
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